ad

Spoofing Attack


Spoofing Attack

In the context of network security, a spoofing attack is a situation in which one person or program successfully masquerades as another by falsifying data, thereby gaining an illegitimate advantage.

Spoofing and TCP/IP

Many of the protocols in the TCP/IP suite do not provide mechanisms for authenticating the source or destination of a message. They are thus vulnerable to spoofing attacks when extra precautions are not taken by applications to verify the identity of the sending or receiving host. IP spoofing and ARP spoofing in particular may be used to leverage man-in-the-middle attacks against hosts on a computer network. Spoofing attacks which take advantage of TCP/IP suite protocols may be mitigated with the use of firewalls capable ofdeep packet inspection or by taking measures to verify the identity of the sender or recipient of a message.



E-mail spoofing
The sender information shown in e-mails (the "From" field) can be spoofed easily. This technique is commonly used by spammers to hide the origin of their e-mails and leads to problems such as misdirected bounces (i.e. e-mail spam backscatter).
E-mail address spoofing is done in quite the same way as writing a forged return address using snail mail. As long as the letter fits the protocol, (i.e. stamp, postal code) the SMTP protocol will send the message. It can be done using a mail server with telnet.
GPS spoofing
A GPS spoofing attack attempts to deceive a GPS receiver by broadcasting incorrect GPS signals, structured to resemble a set of normal GPS signals, or by rebroadcasting genuine signals captured elsewhere or at a different time. These spoofed signals may be modified in such a way as to cause the receiver to estimate its position to be somewhere other than where it actually is, or to be located where it is but at a different time, as determined by the attacker. One common form of a GPS spoofing attack, commonly termed a carry-off attack, begins by broadcasting signals synchronized with the genuine signals observed by the target receiver. The power of the counterfeit signals is then gradually increased and drawn away from the genuine signals. It has been suggested that the capture of a Lockheed RQ-170 drone aircraft in northeastern Iran in December, 2011 was the result of such an attack.
GPS spoofing attacks had been predicted and discussed in the GPS community previously, but no known example of a malicious spoofing attack has yet been confirmed. A "proof-of-concept" attack was successfully performed in June, 2013, when the luxury yacht "White Rose" was misdirected with spoofed GPS signals from Monaco to the island of Rhodes by a group of aerospace engineering students from the Cockrell School of Engineering at the University of Texas in Austin. The students were aboard the yacht, allowing their spoofing equipment to gradually overpower the signal strengths of the actual GPS constellation satellites, altering the course of the yacht.

Preventing GPS spoofing

There are different ways to prevent GPS spoofing. The Department of Homeland Security, in collaboration with the National Cybersecurity and Communications Integration Center (NCCIC) and the National Coordinating Center for Communications (NCC), released a paper which lists methods to prevent this type of spoofing. Some of the most important and most recommended to use are: 
1.Obscure antennas. Install antennas where they are not visible from publicly accessible locations or obscure their exact locations by introducing impediments to hide the antennas.
2.Add a sensor/blocker. Sensors can detect characteristics of interference, jamming, and spoofing signals, provide local indication of an attack or anomalous condition, communicate alerts to a remote monitoring site, and collect and report data to be analyzed for forensic purposes.
3.Extend data spoofing whitelists to sensors. Existing data spoofing whitelists have been and are being implemented in government reference software, and should also be implemented in sensors.
4.Use more GPS signal types. Modernized civil GPS signals are more robust than the L1 signal and should be leveraged for increased resistance to interference, jamming, and spoofing.
5.Reduce latency in recognition and reporting of interference, jamming, and spoofing. If a receiver is misled by an attack before the attack is recognized and reported, then backup devices may be corrupted by the receiver before hand over.
These installation and operation strategies and development opportunities described herein can significantly enhance the ability of GNSS receivers and associated equipment to defend against a range of interference, jamming, and spoofing attacks.


No comments

Caller ID Spoofing

Caller ID Spoofing   Caller ID spoofing   is the practice of causing the telephone network to indicate to the receiver of a call that...